Химия

 


 

Производство

Сырье и энергия
Сера и серная кислота
Связанный азот
Удобрения и химикаты
Силикаты
Кислоты щелочи хлор
Металлы
Алюминий
Чугун и сталь
Полупроводники
Топливо
Органический синтез
Синтетические соединения
История химии
Химия земли
Химия и научно-технический прогресс
Химия в быту
Органическая химия



Яндекс.Метрика

О том, как физики помогают химикам

Вспомним правило Марковникова: при реакции гало-геноводородов с олефинами водород присоединяется к углероду, несущему наибольшее число водородных атомов. Казалось бы, все ясно. Но задумаемся: как именно установил Марковников свое правило? Как он пришел к заключению, что водород присоединяется именно к этому, а не к другому атому?
Присоединение хлористого водорода к пропилену, например, может идти «по Марковникову» с образованием 2-хлорпропана или «против Марковникова», когда получают 1-хлорпропан. Но как различить эти два вещества? Ведь мы не можем увидеть молекулу, а оба эти соединения — похожие по свойствам низкокипящие жидкости.
Конечно, сегодня мы знаем многое, чего не могли знать Бутлеров и Марковников. Но так ли было легко работать химикам в прежние времена?

Трудный хлеб химиков прошлого
Попробуем рассказать, как работали химики, чьи имена сегодня известны каждому школьнику и чьи портреты украшают кабинеты химии.
Откроем наугад какой-нибудь старый журнал, к примеру, более чем столетней давности том «Журнала Русского химического общества и физического общества при Императорском С.-Петербургском университете». В пятом томе за 1873 г. на странице 16
находим статью великого русского химика Н. Н. Зинина под названием «Об окислении». Читать эту статью современному химику весьма непривычно. Статья посвящена одному-единственному веществу, занимает же она девять страниц. В современном научном журнале вряд ли бы приняли такую статью. Посмотрите, как свободно и пространно начинается эта статья.
«В статье о лепидене я заметил, что оксилепиден, расплавленный и разогретый до начала легкого вскипания (отделение пузырьков газа из расплавленного тела начинается при температуре около 340 °С и термометр вдруг поднимается за предел 360 °С), застывает в прозрачную, смолистую некристаллическую массу, твердеющую только при температуре около 60 °С и растворяющуюся легко и не в очень большом (раз 8 или 10 по объему) количестве эфира; при этом смолистая масса как бы тает в эфире, и если последнего взято мало, то выделяются кристаллы во время самого растворения, если же количества эфира достаточно, то сначала все растворится и кристаллы начинают выделяться лишь через несколько времени, и их всегда бывает три рода: одни пластинчатые, другие в виде коротких 4-гранных призм, третьи в виде мелкого матового порошка».
Сравните это с лаконичным, деловым, сухим стилем современной статьи. Что ж, информации сегодня так много, что приходится сообщать о результатах предельно кратко. Но дело даже не в этом.
Прочитав статью до конца, мы убедимся, что не может еще написать формулу этого самого оксилепидена. Он только сделал очередной небольшой шаг в изучении соединения. Может быть, еще и поэтому он не может четко указать — «оксилепиден — это такое-то соединение», а вынужден лишь! описывать свои наблюдения.
А наблюдения эти такого рода: «Октаэдрические кристаллы очень мелки, под микроскопом при линейном увеличении около 120 они представляются в виде как будто правильных октаэдров желтоватого цвета чистые они почти нерастворимы в спирте, смешанный же с большим количеством пластинок, растворяются довольно нетрудно, но все-таки эти два рода кристаллов можно отделить друг от друга кристаллизованием из спирта и получить чистые октаэдры, пере-кристаллизовав их из уксусной кислоты».
Дальше ученый пишет о пластинчатых кристаллах: «В уксусной кислоте тело растворяется очень легко 1 ч. в 1 ч. кипящей кислоты, при охлаждении не очень скоро кристаллизуется в полу-шары, образованные из длинных листочков, концентрически расположенных, и весь раствор скоро застывает; если даже растворить 1 ч. тела в 2у2 ч. уксусной кислоты, то при охлаждении весь раствор застывает в мягкую массу.
При 130°С. тело ничего не теряет в весе, в волосной трубке плавится при 136 °С, по охлаждении застывает в смолистую массу некристаллическую. Цинк не действует на тело, растворенное в уксусной кислоте.
Анализы дали следующие результаты: 0,369 г тела дали 1,171 г С02 и 0,188 г Н20, т. е. 86,57% С и 5,20% Н.
Стоп! Мы пришли к основному методу, благодаря которому химики на протяжении более чем столетия добывают сведения о соединениях, с которыми работают. Это количественный элементный анализ.




Меню раздела

Органическая химия
Метан, этилен, ацетилен
Как получить метан?
Двойная связь
Тройная связь
Бензол
Формула Кекуле за и против
Шестерка электронов
Формула Кекуле
Ароматичность – отнюдь не пахучесть
Основа основ начало
Экскурс в глубь истории
«Дремучий лес» органической химии
Химическое строение тел
Что такое органическая химия?
«Изюминки» молекул
Углерод, водород, кислород
Азот
Несколько функциональных групп в одной молекуле
Молекулы и зеркало
«Уголь плюс вода»
Шестнадцать изомеров
Сахар, крахмал и клетчатка
Спирт из сахара и сахар из воздуха
Полисахарид крахмал
Аминокислота плюс аминокислота
Белки и капрон
Белок белку рознь
Тайна серповидной анемии
Как синтезируют белок
Молекула белка в пространстве
Химия наследственности
Что такое гетеро-циклы?
Фридрих Мишер
Основания, нуклеозиды, нуклеотиды
ДНК
Что такое ген?
Ферменты
Лекарства и яды
Почему стрептоцид лечит?
Микробы против микробов
Многоликие алкалоиды
Снотворные
Как ищут новые лекарства?
Органические соединения
Металл соединяется с углеводородом
Неорганический бензол
Силикон – каучук из кремнезема
Хлорофос, зарин и другие
Самый агрессивный элемент
Второе дыхание металлоорганической химии
Цвет и свет
Почему тела окрашены?
Разные теории
Какие бывают красители?
Химия и свет
Как работает химик?
Колба – инструмент химика
Выделение и очистка
«Хроматография» означает «цветопись»
Охарактеризовать вещество
О том, как физики помогают химикам
Сжигая вещество, узнаем его формулу
Химик «видит» молекулу
Для чего химику ультрафиолетовые и инфракрасные лучи?
Ядерный магнитный резонанс
Молекулу разбивают на осколки
Заключение


 

© 2011 Химическая промышленность
Копирование материалов сайта разрешается только с указанием прямой индексируемой ссылки на источник.